一些牛逼的Python程序整理(一些简单的python程序)
一些牛逼的Python程序整理(一些简单的python程序)
Manoj Memana Jayakumar, 3000+ 顶
更新:凭借这些脚本,我找到了工作!可看我在这个帖子中的回复,《Has anyone got a job through Quora? Or somehow made lots of money through Quora?》
1. 电影/电视剧 字幕一键-器
我们经常会遇到这样的情景,就是打开字幕网站subscene 或者opensubtitles, 搜索电影或电视剧的名字,然后选择正确的抓取器,-字幕文件,解压,剪切并粘贴到电影所在的文件夹,并且需把字幕文件重命名以匹配电影文件的名字。是不是觉得太无趣呢?对了,我之前写了一个脚本,用来-正确的电影或电视剧字幕文件,并且存储到与电影文件所在位置。所有的操作步骤仅需一键就可以完成。懵逼了吗?
请看这个 Youtube 视频:https://youtu.be/Q5YWEqgw9X8
源代码存放在GitHub:subtitle-downloader
更新:目前,该脚本支持多个字幕文件同时-。步骤:按住 Ctrl ,选择你想要为其-字幕的多个文件 , 最后执行脚本即可
2. IMDb 查询/电子表格生成器
我是一个电影迷,喜欢看电影。我总是会为该看哪一部电影而困惑,因为我搜集了大量的电影。所以,我应该如何做才能消除这种困惑,选择一部今晚看的电影?没错,就是IMDb。我打开 http://imdb.com,输入电影的名字,看排名,阅读和评论,找出一部值得看的电影。
但是,我有太多电影了。谁会想要在搜索框输入所有的电影的名字呢?我肯定不会这样做,尤其是我相信“如果某些东西是重复性的,那么它应该是可以自动化的”。因此,我写了一个 python 脚本, 目的是为了使用 非官方的 IMDb API 来获取数据。我选择一个电影文件(文件夹),点击右键,选择‘发送到’,然后 点击 IMDB.cmd (顺便提一下,IMDB.cmd 这个文件就是我写的 python 脚本),就是这样。
我的浏览器会打开这部电影在IMDb网站上的准确页面。
仅仅只需点击一个按键,就可以完成如上操作。如果你不能够了解这个脚本到底有多酷,以及它可以为你节省多少时间,请看这个 Youtube 视频:https://youtu.be/JANNcimQGyk
从现在开始,你再也不需要打开你的浏览器,等待加载IMDb的页面,键入电影的名字。这个脚本会帮你完成所有的操作。跟往常一样,源代码放在了GitHub:imdb ,并且附有操作说明。当然,由于这个脚本必须去掉文件或文件夹中的无意义的字符,比如“DVDRip, YIFY, BRrip”等,所以在运行脚本的时候会有一定比例的错误。但是经过测试,这个脚本在我几乎所有的电影文件上都运行的很好。
2014-04-01更新:
许多人在问我是否可以写一个脚本,可以发现一个文件夹中所有电影的详细信息,因为每一次只能发现一个电影的详细信息是非常麻烦的。我已经更新了这个脚本,支持处理整个文件夹。脚本会分析这个文件夹里的所有子文件夹,从 IMDb上抓取所有电影的详细信息 ,然后打开一个电子表格,根据IMDb 上的排名,从高到低降序排列所有的电影。这个表格中包含了 (所有电影)在 IMDb URL, 年份,情节,分类,获奖信息,演员信息,以及其他的你可能在 IMBb找到的信息。下面是脚本执行后,生成的表格范例:
Your very own personal IMDb database! What more can a movie buff ask for? ;)
Source on GitHub: imdb
你也可以有一个个人 IMDb 数据库!一个电影爱好者还能够要求更多吗?:)
源代码在 GitHub:imdb
3. theoatmeal.com 连载漫画-器
我个人超级喜欢 Matthew Inman 的漫画。它们在疯狂搞笑的同时,却又发人深省。但是,我很厌烦重复点击下一个,然后才能阅读每一个漫画。另外,由于每一个漫画都由多福图片组成,所以手动-这些漫画是非常困难的。
基于如上原因,我写了一个 python 脚本 ,用来从这个站点-所有的漫画。这个脚本利用 BeautifulSoup (http://crummy.com/software/B… ) 解析 HTML 数据, 所以在运行脚本前,必须安装 BeautifulSoup。用于-燕麦片(马修.英曼的一部漫画作品)的-器已经上传到GitHub:theoatmeal.com-downloader 。(漫画)-完后的文件夹是这样的 :D
4. someecards.com -器
成功地从http://theoatmeal.com -了整部漫画后,我在想是否我可以做同样的事情 , 从另一个我喜欢的站点— 搞笑的,唯一的http://someecards.com . -一些东西呢?
somececards 的问题是,图片命名是完全随机的,所有图片的排放没有特定的顺序,并且一共有52 个大的类别, 每一个类别都有数以千计的图片。
我知道,如果我的脚本是多线程的话,那将是非常完美的,因为有大量的数据需要解析和-,因此我给每一个类别中的每一页都分配一个线程。这个脚本会从网站的每一个单独的分类-搞笑的电子贺卡,并且把每一个放到单独的文件夹。现在,我拥有这个星球上最好笑的电子贺卡私人收藏。-完成后,我的文件夹是这样的:
没错,我的私人收藏总共包括:52个类别,5036个电子贺卡。源代码在这里:someecards.com-downloader
编辑:很多人问我是否可以共享我-的所有文件,(在这里,我要说)由于我的网络不太稳定,我没办法把我的收藏上传到网络硬盘,但是我已经上传一个种子文件,你们可以在这里-:somecards.com Site Rip torrent
种下种子,传播爱:)
Akshit Khurana,4400+ 顶
感谢 500 多个朋友在 Facebook 上为我送出的生日祝福
有三个故事让我的21岁生日变的难忘,这是最后一个故事。我倾向于在每一条祝福下亲自评论,但是使用 python 来做更好。
1…
2
31. # Thanking everyone who wished me on my birthday
4
52. import requests
6
73. import json
8
94.
10
115. # Aman s post time
12
136. AFTER = 1353233754
14
157. TOKEN =
16
178.
18
199. def get_posts():
20
2110. """Returns dictionary of id, first names of people who posted on my wall
22
2311. between start and end time"""
24
2512. query = ("SELECT post_id, actor_id, message FROM stream WHERE "
26
2713. "filter_key = others AND source_id = me() AND "
28
2914. "created_time > 1353233754 LIMIT 200")
30
3115.
32
3316. payload = { q : query, access_token : TOKEN}
34
3517. r = requests.get( https://graph.facebook.com/fql , params=payload)
36
3718. result = json.loads(r.text)
38
3919. return result[ data ]
40
4120.
42
4321. def commentall(wallposts):
44
4522. """Comments thank you on all posts"""
46
4723. #TODO convert to batch request later
48
4924. for wallpost in wallposts:
50
5125.
52
5326. r = requests.get( https://graph.facebook.com/%s %
54
5527. wallpost[ actor_id ])
56
5728. url = https://graph.facebook.com/%s/comments % wallpost[ post_id ]
58
5929. user = json.loads(r.text)
60
6130. message = Thanks %s :) % user[ first_name ]
62
6331. payload = { access_token : TOKEN, message : message}
64
6532. s = requests.post(url, data=payload)
66
6733.
68
6934. print "Wall post %s done" % wallpost[ post_id ]
70
7135.
72
7336. if __name__ == __main__ :
74
7537. commentall(get_posts())
76
77…
为了能够顺利运行脚本,你需要从Graph API Explorer(需适当权限)获得 token。本脚本假设特定时间戳之后的所有帖子都是生日祝福。
尽管对评论功能做了一点改变,我仍然喜欢每一个帖子。
当我的点赞数,评论数以及评论结构在 ticker(Facebook一项功能,朋友可以看到另一个朋友在做什么,比如点赞,听歌,看电影等) 中爆涨后,我的一个朋友很快发现此事必有蹊跷。
尽管这个不是我最满意的脚本,但是它简单,快捷,有趣。
当我和 Sandesh Agrawal 在网络实验室讨论时,有了写这个脚本的想法。为此,Sandesh Agrawal 耽搁了实验室作业,深表感谢。
Tanmay Kulshrestha,3300+ 顶
好了,在我失去这个项目之前(一个猪一样的朋友格式化了我的硬盘,我的所有代码都在那个硬盘上)或者说,在我忘记这些代码之前,我决定来回答这个问题。
整理照片
当我对图像处理感兴趣之后,我一直致力于研究机器学习。我写这个有趣的脚本,目的是为了分类图片,很像 Facebook 做的那样(当然这是一个不够精确的算法)。我使用了 OpenCV 的人脸检测算法,“haarcascade_frontalface_default.xml”,它可以从一张照片中检测到人脸。
你可能已经察觉到这张照片的某些地方被错误地识别为人脸。我试图通过修改一些参数(来修正这一问题),但还是某些地方被错误地识别为人脸,这是由相机的相对距离导致的。我会在下一阶段解决这一问题(训练步骤)。
这个训练算法需要一些训练素材,每个人需要至少需要100-120个训练素材(当然多多益善)。我太懒了,并没有为每一个人挑选照片,并把它们复制粘帖到训练文件夹。所以,你可能已经猜到,这个脚本会打开一个图片,识别人脸,并显示每一个人脸(脚本会根据处于当前节点的训练素材给每一个人脸预测一个名字)。伴随着每次你标记的照片,Recognizer 会被更新,并且还会包含上一次的训练素材。在训练过程中,你可以增加新的名字。我使用 python 库 tkinter 做了一个 GUI。因此,大多数时候,你必须初始化一小部分照片(给照片中的人脸命名),其他的工作都可以交给训练算法。因此,我训练了 Recognizer ,然后让它(Recognizer)去处理所有的图片。
我使用图片中包含的人的人名来命名图片,(例如:Tanmay&*****&*****)。因此,我可以遍历整个文件夹,然后可以通过输入人名的方法来搜索图片。
初始状态下,当一个人脸还没有训练素材时(素材库中还没有包括这个人脸的名字),需要询问他/她的名字。
我可以增加一个名字,像这个样子:
当训练了几个素材后,它会像这个样子:
最后一个是针对应对那些垃圾随机方块而使用的变通解决方案。
带名字的最终文件夹。
所以,现在寻找图片变得相当简单。顺便提一下,很抱歉(我)放大了这些照片。
1import cv2
2
3import sys
4
5import os,random,string
6
7#choices=[ Add a name ]
8
9import os
10
11current_directory=os.path.dirname(os.path.abspath(__file__))
12
13from Tkinter import Tk
14
15from easygui import *
16
17import numpy as np
18
19x= os.listdir(current_directory)
20
21new_x=[]
22
23testing=[]
24
25for i in x:
26
27if i.find( . )==-1:
28
29new_x+=[i]
30
31else:
32
33testing+=[i]
34
35x=new_x
36
37g=x
38
39choices=[ Add a name ]+x
40
41y= range(1,len(x)+1)
42
43def get_images_and_labels():
44
45global current_directory,x,y,g
46
47if x==[]:
48
49return (False,False)
50
51image_paths=[]
52
53for i in g:
54
55path=current_directory+ +i
56
57for filename in os.listdir(path):
58
59final_path=path+ +filename
60
61image_paths+=[final_path]
62
63# images will contains face images
64
65images = []
66
67# labels will contains the label that is assigned to the image
68
69labels = []
70
71for image_path in image_paths:
72
73# Read the image and convert to grayscale
74
75img = cv2.imread(image_path,0)
76
77# Convert the image format into numpy array
78
79image = np.array(img, uint8 )
80
81# Get the label of the image
82
83backslash=image_path.rindex( )
84
85underscore=image_path.index( _ ,backslash)
86
87nbr = image_path[backslash+1:underscore]
88
89t=g.index(nbr)
90
91nbr=y[t]
92
93# If face is detected, append the face to images and the label to labels
94
95images.append(image)
96
97labels.append(nbr)
98
99#cv2.imshow("Adding faces to traning set...", image)
100
101#cv2.waitKey(50)
102
103# return the images list and labels list
104
105return images, labels
106
107# Perform the tranining
108
109def train_recognizer():
110
111recognizer = cv2.createLBPHFaceRecognizer()
112
113images, labels = get_images_and_labels()
114
115if images==False:
116
117return False
118
119cv2.destroyAllWindows()
120
121recognizer.train(images, np.array(labels))
122
123return recognizer
124
125def get_name(image_path,recognizer):
126
127global x,choices
128
129#if recognizer== :
130
131# recognizer=train_recognizer()
132
133cascadePath = "haarcascade_frontalface_default.xml"
134
135faceCascade = cv2.CascadeClassifier(cascadePath)
136
137#recognizer=train_recognizer()
138
139x1=testing
140
141global g
142
143print image_path
144
145image = cv2.imread(image_path)
146
147img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
148
149predict_image = np.array(img, uint8 )
150
151faces = faceCascade.detectMultiScale(
152
153img,
154
155scaleFactor=1.3,
156
157minNeighbors=5,
158
159minSize=(30, 30),
160
161flags = http://cv2.cv.CV_HAAR_SCALE_IMAGE
162
163)
164
165for (x, y, w, h) in faces:
166
167f= image[y:y+w,x:x+h]
168
169cv2.imwrite( temp.jpg ,f)
170
171im= temp.jpg
172
173nbr_predicted, conf = recognizer.predict(predict_image[y: y + h, x: x + w])
174
175predicted_name=g[nbr_predicted-1]
176
177print "{} is Correctly Recognized with confidence {}".format(predicted_name, conf)
178
179if conf>=140:
180
181continue
182
183msg= Is this +predicted_name
184
185reply = buttonbox(msg, image=im, choices=[ Yes , No ])
186
187if reply== Yes :
188
189reply=predicted_name
190
191directory=current_directory+ +reply
192
193if not os.path.exists(directory):
194
195os.makedirs(directory)
196
197random_name= .join(random.choice(string.ascii_uppercase + string.digits) for _ in range(7))
198
199path=directory+ +random_name+ .jpg
200
201cv2.imwrite(path,f)
202
203else:
204
205msg = "Who is this?"
206
207reply = buttonbox(msg, image=im, choices=choices)
208
209if reply == Add a name :
210
211name=enterbox(msg= Enter the name , title= Training , strip=True)
212
213print name
214
215choices+=[name]
216
217reply=name
218
219directory=current_directory+ +reply
220
221if not os.path.exists(directory):
222
223os.makedirs(directory)
224
225random_name= .join(random.choice(string.ascii_uppercase + string.digits) for _ in range(7))
226
227path=directory+ +random_name+ .jpg
228
229print path
230
231cv2.imwrite(path,f)
232
233
234
235# calculate window position
236
237root = Tk()
238
239pos = int(root.winfo_screenwidth() * 0.5), int(root.winfo_screenheight() * 0.2)
240
241root.withdraw()
242
243WindowPosition = "+%d+%d" % pos
244
245
246
247# patch rootWindowPosition
248
249rootWindowPosition = WindowPosition
250
251def detect_faces(img):
252
253global choices,current_directory
254
255imagePath = img
256
257faceCascade = cv2.CascadeClassifier(cascPath)
258
259image = cv2.imread(imagePath)
260
261gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
262
263faces = faceCascade.detectMultiScale(
264
265gray,
266
267scaleFactor=1.3,
268
269minNeighbors=5,
270
271minSize=(30, 30),
272
273flags = http://cv2.cv.CV_HAAR_SCALE_IMAGE
274
275)
276
277
278
279print "Found {0} faces!".format(len(faces))
280
281m=0
282
283for (x, y, w, h) in faces:
284
285m+=1
286
287padding=0
288
289f= image[y-padding:y+w+padding,x-padding:x+h+padding]
290
291cv2.imwrite( temp.jpg ,f)
292
293im= temp.jpg
294
295msg = "Who is this?"
296
297reply = buttonbox(msg, image=im, choices=choices)
298
299if reply == Add a name :
300
301name=enterbox(msg= Enter the name , title= Training , strip=True)
302
303print name
304
305choices+=[name]
306
307reply=name
308
309directory=current_directory+ +reply
310
311if not os.path.exists(directory):
312
313os.makedirs(directory)
314
315random_name= .join(random.choice(string.ascii_uppercase + string.digits) for _ in range(7))
316
317path=directory+ +random_name+ .jpg
318
319print path
320
321cv2.imwrite(path,f)
322
323def new(img,recognizer):
324
325imagePath = current_directory+ +img
326
327print imagePath
328
329get_name(imagePath,recognizer)
330
331cascPath = haarcascade_frontalface_default.xml
332
333b=0
334
335os.system("change_name.py")
336
337for filename in os.listdir("."):
338
339b+=1
340
341if b%10==0 or b==1:
342
343os.system("change_name.py")
344
345recognizer=train_recognizer()
346
347if filename.endswith( .jpg ) or filename.endswith( .png ):
348
349print filename
350
351imagePath=filename
352
353#detect_faces(imagePath)
354
355new(imagePath,recognizer)
356
357os.remove(filename)
358
359raw_input( Done with this photograph )
我想进一步修改它的搜索功能,其中会包含更多的搜索类型,比如基于地理位置,微笑的脸,伤心的脸等等。(这样我就可以在 Skylawns 上 搜索快乐的 Tanmay & 沮丧的 Akshay & 快乐的…)
我还写了很多脚本,但那都是很久之前的事情了,我也懒得再去检查这些代码了,我会列出部分代码。
GitHub 链接:tanmay2893/Image-Sorting
Gmail 邮件通知
在那段时间,我没有智能手机。导致我常常错过来自于我所在的研究所的邮件(在我的研究所的邮件 ID),我写了一个脚本,可以在我的笔记本上运行,而且能给我的手机发信息。我使用 python 的 IMAP 库来获取邮件。我可以输入一些重要的人的名字,这样一来,当这些人给我发了邮件后,我可以收到短信通知。对于短信, 我使用了 way2sms.com(写了一个 python 脚本,自动登陆我的账户,然后发送 短信)。
PNR(Passenger Name Record旅客订座记录,下同) 状态短讯
铁路方面不经常发送 PNR 状态消息。因此,我写了一个脚本,可以从印度铁路网站获取 PNR 状态。这是非常容易的,因为那个网站没有验证码,即使有,也只是形同虚设的验证码(在过去,一些字母会被写在看起来像图片一样的东西上面,因为他们为这些字母使用了一个 “check” 的背景图)。我们可以轻松地从 HTML 网页得到这些字母。我不明白他们这样做的目的是什么,难道仅仅是为了愚弄他们自己吗?不管怎么样,我使用短信息脚本来处理它,经过一段时间间隔,它会在我的笔记本上运行一次,就像是一个定时任务,只要 PNR 状态有更新,它就会把更新信息发送给我。
YouTube 视频-器
这个脚本会从 Youtube 页面-所有的 Youtube 视频 以及他们所有的字幕文件(从Download and save subtitles -)。为了使-速度更快一点,我使用了多线程。还有一个功能是,即使你的电脑重启了,仍然可以暂停和恢复播放-的(视频)。我原本想做一个UI的,但是我太懒了… 一旦我的-任务完成,我就不去关心 UI 的事情了。
板球比分通知器
我猜想这个功能已经在别的地方提到过了。一个窗口通知器。(在右下角的通知区域,它会告诉你实时比分以及评论信息)。如果你愿意的化,在某些时间段,你也可以关掉它。
WhatsApp 消息
这个并不太实用,我只是写着玩玩。因为 Whatsapp 有网页版,我使用 selenium 和 Python -我的所有联系人的显示图片,并且,一旦有人更新了他们的显示图片,我将会知道。(如何做到的?非常简单,在设定好时间间隔后,我会一遍又一遍的不停-所有的头像信息,一旦照片的尺寸发生变化,我将会知道他/她更新了显示图片)。然后我会给他/她发一个信息,不错的头像。我仅仅使用了一次来测试它的可用性。
Nalanda -器
我们一般在这个叫 ‘Nalanda’ 的网站上-一些教学课件以及其他的课程资料, ‘Nalanda’ 在 BITS Pilani (Nalanda). 我自己懒得在考试前一天-所有的课件,所以,我写了这个这个-器,它可以把每一门科的课件-到相应的文件夹。
代码:
1import mechanize,os,urllib2,urllib,requests,getpass,time
2
3start_time = time.time()
4
5from bs4 import BeautifulSoup
6
7br=mechanize.Browser()
8
9br.open( https://nalanda.bits-pilani.ac.in/login/index.php )
10
11br.select_form(nr=0)
12
13
14
15name=
16
17while name== :
18
19 try:
20
21 print *******
22
23 username=raw_input( Enter Your Nalanda Username: )
24
25 password=getpass.getpass( Password: )
26
27 br.form[ username ]=username
28
29 br.form[ password ]=password
30
31 res=br.submit()
32
33 response=res.read()
34
35 soup=BeautifulSoup(response)
36
37 name=str(soup.find( div ,attrs={ class : logininfo }).a.string)[:-2]
38
39 except:
40
41 print Wrong Password
42
43f=open( details.txt , w )
44
45f.write(username+ n +password)
46
47f.close()
48
49print Welcome, +name
50
51print All the files will be downloaded in your Drive C in a folder named "nalanda"
52
53#print soup.prettify()
54
55div=soup.find_all( div ,attrs={ class : box coursebox })
56
57
58l=len(div)
59
60a=[]
61
62for i in range(l):
63
64 d=div[i]
65
66 s=str(d.div.h2.a.string)
67
68 s=s[:s.find( ( )]
69
70 c=(s,str(d.div.h2.a[ href ]))
71
72 path= c:nalanda +c[0]
73
74 if not os.path.exists(path):
75
76 os.makedirs(path)
77
78 a+=[c]
79
80#print a
81
82overall=[]
83
84for i in range(l):
85
86 response=br.open(a[i][1])
87
88 page=response.read()
89
90 soup=BeautifulSoup(page)
91
92 li=soup.find_all( li ,attrs={ class : section main clearfix })
93
94 x=len(li)
95
96 t=[]
97
98 folder=a[i][0]
99
100 print Downloading +folder+ files...
101
102 o=[]
103
104 for j in range(x):
105
106 g=li[j].ul
107
108 #print g
109
110 #raw_input( )
111
112 if g!=None:
113
114 temp=http://g.li[ class ].split( )
115
116 #raw_input( )
117
118 if temp[1]== resource :
119
120 #print yes
121
122 #print ********************
123
124 o+=[j]
125
126 h=li[j].find( div ,attrs={ class : content })
127
128 s=str(h.h3.string)
129
130 path= c:nalanda +folder
131
132 if path[-1]== :
133
134 path=path[:-1]
135
136 path+= +s
137
138 if not os.path.exists(path):
139
140 os.makedirs(path)
141
142 f=g.find_all( li )
143
144 r=len(f)
145
146 z=[]
147
148 for e in range(r):
149
150 p=f[e].div.div.a
151
152 q=f[e].find( span ,attrs={ class : resourcelinkdetails }).contents
153
154 link=str(p[ href ])
155
156 text=str(p.find( span ).contents[0])
157
158 typ=
159
160 if str(q[0]).find( word )!=-1:
161
162 typ= .docx
163
164 elif str(q[0]).find( JPEG )!=-1:
165
166 typ= .jpg
167
168 else:
169
170 typ= .pdf
171
172 if typ!= .docx :
173
174 res=br.open(link)
175
176 soup=BeautifulSoup(res.read())
177
178 if typ== .jpg :
179
180 di=soup.find( div ,attrs={ class : resourcecontent resourceimg })
181
182 link=di.img[ src ]
183
184 else:
185
186 di=soup.find( div ,attrs={ class : resourcecontent resourcepdf })
187
188 link=di.object[ data ]
189
190 try:
191
192 if not os.path.exists(path+ +text+typ):
193
194 br.retrieve(link,path+ +text+typ)[0]
195
196 except:
197
198 print Connectivity Issues
199
200 z+=[(link,text,typ)]
201
202 t+=[(s,z)]
203
204 if t==[]:
205
206 print No Documents in this subject
207
208 overall+=[o]
209
210 #raw_input( Press any button to resume )
211
212#print overall
213
214print Time Taken to Download: +str(time.time()-start_time)+ seconds
215
216print Do you think you can download all files faster than this :P
217
218print Closing in 10 seconds
219
220time.sleep(10)
我自己的 DC++
这个脚本并不是很有用,目前只有一些学生在用它, 况且,DC ++ 已经提供了一些很酷的功能。我原本可以优化我自己的版本,但是,由于我们已经有了DC ++,我并没有这么做,尽管我已经使用 nodeJS 和 python 写了一个基础版本。
工作原理:
打开 DC++ , 进入一个中心站点,然后连接,我写了一个 python 脚本来做这件事。脚本会在 PC上创建一个服务器(可以通过修改 SimpleHTTPRequestHandler 来完成)。
在服务器端(使用了NodeJS),它会拿到 PC 的连接,共享给其他的用户。
这个是主页面:
这个页面显示了所有的用户和他们的链接。因为我给 Nick 加了一个超链接,所以在链接这一拦是空的。
所以,当用户数量增加以后,这个页面会列出所有的用户列表。基本上,这个页面充当了一个你和另外一个人联系的中间人角色。我还做了一个在所有用户中搜索特定文件的功能。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~